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ABSTRACT 

A comprehensive nesting capability has been built into the NMMB.  This note provides 
highlights of the key aspects of this capability.  A global or regional parent domain can contain 
multiple static and/or moving nests that are 1-way or 2-way (upscale) interactive with their 
parent.  Static nests can telescope through as many ‘generations’ as desired.  Each moving nest 
can contain one moving nest within it but the innermost moving nest cannot telescope further.  
Each of these aspects of the nesting is described.  The NMMB’s nests are currently used in 
operations in the NAM and in HMON.  The purpose of this note is to describe the fundamentals 
of how the NMMB’s nesting works and basic aspects of how it is built therefore no forecast 
results are included.   

1. Nest fundamentals

a. The grids

All nests are parent-oriented, i.e., they lie on the same grid projection of the Arakawa B-grid
as their parents.  For static nests it would be possible in principle to use free-standing nests that 
lie on their own projections that are independent of their parent.  Generation of interpolation 
weights between parent and child would be needed only once during the initialization step.  
However such free-standing nests using two-way interaction would be impractical for moving 
nests since the cost of generating new interpolation weights for all points on the nest with respect 
to the parent would have to be generated every time a nest moved and that would be 
prohibitively expensive. 

     Figure 1 depicts a nested domain lying on its parent’s domain.  The x and y directions are the 
same in both domains indicating the projections are identical.  Also shown is how the southwest 
corner mass point in the nest always lies on a mass point of the parent.  This remains true for 
moving nests in that whenever they shift position their southwest corner mass point moves from 
one parent mass point to another.  The vertical dimension is not considered here other than to 
note that the parent and all of its children must have identical vertical structures. 



 
 
 
The number of nest grid increments overlain by one parent grid increment can be either odd or 
even.  The location of the parent’s and the nest’s mass and velocity points relative to each other 
is critical in properly describing the interaction of the two domains.  Figure 2 shows these 
relationships for both odd and even ratios of grid increments. 
 



 
Figure 2.  Mass and velocity points on parent (red) and nest (blue) grids.  Mass and velocity points are  
H / h and V / v for parent / nest grids, respectively. 
 
 
Note that for odd grid increment ratios parent mass points always coincide with nest mass points 
and parent velocity points always coincide with nest velocity points.  For even ratios all parent 
mass and velocity points lie on nest mass points on the nest grid. 
 
b.  The two modes of integration 
 
     There are two fundamental ways that a parent and its children can interact.  In 1-way mode 
the interaction consists solely of the parent’s computing and sending boundary data to its 
children.  That data is valid at the end of the parent’s current timestep and the children receive it 
when they are at the beginning of that parent timestep.  With that information the children can 
then interpolate boundary data linearly in time between the start and end of that given parent 
timestep.  The parent computes this data upon reaching the end of each of its dynamic timesteps, 
sends it to the children with non-blocking sends, then immediately proceeds with its own 
integration.  When the children reach the end of a parent timestep the data received from the 



parent valid at the end of that parent timestep becomes the data valid for the beginning of the 
following parent timestep.  Figure 3 shows a schematic of this process. 
 
 

 
 
Figure 3.  Parents send boundary data from the end of each of their timesteps to their children.  Time is 
increasing from left to right. 
 
 
 
     In 2-way mode the parent still sends boundary data in the same manner but in addition the 
children send their own data from the interior of their domains to their parent.  In theory this 
enhances the skill of the parent’s forecast since the children’s data is higher resolution although 
it is averaged on the nest grid before sending.  After the parent sends boundary data to its 
children then it must wait until its children reach the end of that same parent timestep and send 
the parent their interior data and only then can the parent proceed.  This dictates that domains on 
only one ‘generation’ at a time can execute through a parent timestep.  Some models circumvent 
this waiting by making extrapolations of the inter-generational updates but such approximations 
are considered to be potentially too deleterious to the forecast and are rejected in the NMMB. 
This more complex process is shown in Figure 4. 
 
 



 
 
Figure 4.  Parents send boundary data from the end of each of their timesteps to their children while the 
children send their interior data to their parents also at the end of each parent timestep. 
 
 
 
c.  Task Assignments 
 
     Like many models the NMMB segregates its MPI tasks into those used for the forecast 
computation and those used for asynchronous I/O.  The latter may be referred to as quilt tasks in 
that they piece together the memory-distributed output into fields spanning the entire domain.  
There are two fundamental ways in which the NMM-B’s MPI compute tasks are used.  The first 
and simplest is called ‘unique’ which is used for 1-way interaction.  In this case defined sets of 
tasks are assigned to each of the domains and each task will only ever operate on the one 
subdomain with which it is originally associated.  An example of task usage in a set of 1-way 
nests is depicted in Figure 5 where 72 compute tasks are available. 
 
 



 
 
Figure 5.  All available compute tasks are uniquely assigned to the various domains. 
 
 
     For each specific application a first approximation of the task count for each domain is made 
by taking the total number of points in the horizontal on each domain then multiplying by the 
ratio of the uppermost parent’s timestep to the timestep of the given nest.  Sum those values for 
all domains to get a total amount of work being done then determine each domain’s fraction of 
that total.  Multiply that fraction by the total number of available compute tasks to obtain the task 
count for each domain.  For example assume the desired setup has an upper parent domain, a 
child nest, and a grandchild nest and there are 1000 available compute tasks.  The upper parent 
has a timestep of 36 sec and has 10000 points in the horizontal.  Its child has 8000 points and a 
timestep of 12 sec while the grandchild has 7000 points and a timestep of 4 sec.  Then the 
products of point counts times timestep ratios is: 
 
Upper parent:  10000 x (36 / 36) = 10000 
Child:  8000 x (36 / 12) = 24000 
Grandchild:  7000 x (36 / 4) = 63000 
 



Grand total:  10000 + 24000 + 63000 = 97000 
 
Upper parent fraction:  10000 / 97000 = 0.103 
Child fraction:  24000 / 97000 = 0.247 
Grandchild fraction:  63000 / 97000 = 0.650 
 
Thus the first guess for the number of parent compute tasks is 1000 x 0.103 = 103 and similarly 
the counts for the child and grandchild are 247 and 650.  To optimize the task counts the user 
needs to experiment.  Parent domains will do some additional work by computing boundary 
values for their children every timestep which means task counts should be adjusted from the 
first approximation.  The goal is to minimize wait time by both parents and children.  Parents are 
one parent timestep ahead of their children when they send boundary data via non-blocking 
sends.  This implies that parents should not run too fast or they could be ready to send new 
boundary data before the previous set of data has been received by the children thus requiring the 
parent to wait.  On the other hand if a child runs too fast then it may be ready to receive new 
boundary data before its parent has sent it thus requiring the child to wait. 
 
     The second and more complex method of task usage is called ‘generational’ and it is used for 
2-way interactive nesting where the nests send data from their domain interiors back to their 
parents.  As explained earlier 2-way nesting means that parents send boundary data back in time 
to their children but the parent cannot then proceed as in 1-way nesting because it must wait to 
receive upscale feedback from its children.  Therefore only one generation of domains at a time 
can execute its forecast through one of its parent’s timesteps.  Forecast speed is a top priority in 
operations therefore every effort must be made to minimize waiting by the compute tasks and 
forcing entire generations of domains to wait would be a very serious waste of resources.  In the 
NMMB this problem is minimized by allowing processor cores that would otherwise be waiting 
to instead execute on domains within the currently active generation. 
 
     The strategy for generational task assignments begins with using ALL available compute 
tasks in the generation of domains that is deemed to be the most expensive computationally.  
Then in the remaining generations reuse as many of the compute tasks as needed to minimize 
that generation’s runtime while bearing in mind that using too many tasks on a given domain can 
lead to a slowdown if the halo exchanges between the task subdomains take too much time.  
Therefore even though all tasks might not be used at all times the forecast still runs as fast as it 
possibly can.  An example of 2-way task use on three generations of domains is seen in Figure 6 
where again 72 compute tasks are available as in Fig. 5.  For the sake of illustration it is assumed 
that in this forecast generation 2 was determined to be the most computationally expensive. 



 
Figure 6.  All available compute tasks are assigned to the 2nd generation since it is the most expensive 
computationally.  Some of those tasks are then reused in the remaining domains in the other generations. 
 
 
     A task is not allowed to lie on more than one domain in a generation because all domains 
within each generation run concurrently.  Also it is important to note that the quilt tasks must 
remain fully separate from the compute tasks or else the sending of the history/restart data from 
the compute tasks would not be asynchronous. 
 
d.  MPI communicators 
 
     All interaction between different domains is strictly between a parent and its children.  Arrays 
of MPI communicators are created to handle those communications.  Intercommunicators 
between a parent and each of its children are used for unique task assignments.  They are the 
simplest type of communicator since the lead task on each domain has a rank of 0 and MPI 
sends/recvs use target and sender task ranks.  For instance assume the global task ranks of a 
parent domain are 25, 26, and 27 while the global task ranks of one of its children are 52, 53, 54, 
and 55.  Then the intercommunicator task ranks are 0, 1, and 2 for the parent and 0, 1, 2, and 3 
for the child.   



 
     When using generational task assignments intercommunicators cannot be used since they 
require that each task exists in only one group, i.e., on each domain.  Since generational task 
usage means tasks may lie on more than one domain then intracommunicators are required 
between parents and their children.  To see how they work assume we have the following global 
task ranks on a parent and its child. 
 
Parent - 3, 4, 5, 6 
Child - 1, 2, 3, 4, 5, 6, 7 
 
Now starting with the parent’s tasks create a non-repeating union of all the tasks then translate 
that list into a monotonic one starting with 0. 
 
Union - 3, 4, 5, 6, 1, 2, 7  - - >  0, 1, 2, 3, 4, 5, 6 
 
Using that association then the two domains’ ranks within the intracommunicator are as follows. 
 
Parent - 0, 1, 2, 3 
Child - 4, 5, 0, 1, 2, 3, 6 
 
Since the parent’s global ranks were listed first in the union they will always range from 0 to the 
total number of parent tasks minus 1 in the communicator.  This makes communication from the 
child’s perspective straight forward.  However as seen in this example the child’s task ranks in 
the union can be jumbled depending on how they overlie the parent tasks.  Therefore the parent 
must determine and store the union ranks of each of its children in order to use the 
intracommunicators.  Referring to the numbers above when a parent task wants to communicate 
with the child task with global rank 2 which is 6th in the union then the parent task would know 
that it must use the 6th value in the monotonized sequence which is 5. 
 
e.  The composite object 
 
     When running with generational task assignments in 2-way interaction some or all tasks will 
lie on more than one domain yet each task sees variables and array references in the source code 
such as T(i,j,k) (sensible temperature) and PARENT_SHIFT(n) (a parent’s timestep in which it 
will shift plus the distance in i and j it will shift) that are naturally different for each domain a 
task is on.  The question then arises as to how a task can differentiate between these variables 
and arrays on the multiple domains with which it is associated.  If a task lies on three domains 
then it must have three different locations in memory for the T array.  This problem is solved in 
the NMMB by using something called the composite object which is a derived datatype holding 
every variable that has unique values in the forecast.  It allows any task on multiple domains to 
reference those variables generically as they appear in the code while pointing at the correct 



memory locations of the variables for the particular domain.  The following idealized code 
illustrates how this works.  The type is defined along with generic versions of that type’s 
components that are declared as pointers.   
 
TYPE COMPOSITE 
   REAL, DIMENSION ( : , : , : ) :: T 
   INTEGER, DIMENSION ( 1 : 3 ) :: PARENT_SHIFT 
END TYPE COMPOSITE 
 
REAL, DIMENSION ( : , : , : ), POINTER :: T 
INTEGER, DIMENSION ( : ), POINTER :: PARENT_SHIFT 
 
In a setup routine a pointer of type COMPOSITE is declared and allocated to the total number of 
domains (NUM_DOMAINS).   
 
SUBROUTINE SETUP 
 
TYPE ( COMPOSITE ), DIMENSION ( : ), POINTER, SAVE :: CPL_COMPOSITE  
ALLOCATE ( CPL_COMPOSITE ( 1: NUM_DOMAINS, stat = ISTAT ) ) 
 
END SUBROUTINE SETUP 
 
Not shown here is the subsequent filling with actual data of all the components of 
CPL_COMPOSITE for each domain the given task is on.  Then in a subroutine called 
POINT_TO_COMPOSITE a pointer of type COMPOSITE is declared and pointed at that part of 
the composite object holding the variables relevant to the task’s current domain given by 
MY_DOMAIN_ID.  Finally the declared generic variables are pointed at the appropriate location 
in the composite object for the current domain’s data.   
 
SUBROUTINE POINT_TO_COMPOSITE ( MY_DOMAIN_ID ) 
 
INTEGER, INTENT (IN) :: MY_DOMAIN_ID    !<- - The ID of the task’s current domain 
TYPE ( COMPOSITE ), POINTER :: CC 
CC => CPL_COMPOSITE ( MY_DOMAIN_ID ) 
 
T => cc%T 
PARENT_SHIFT => cc%PARENT_SHIFT 
 
END SUBROUTINE POINT_TO_COMPOSITE 
 



Now the task is prepared for use of the generic variable names T and PARENT_SHIFT which by 
themselves in the source code offer no indication of which domain the task is on.  Routine 
POINT_TO_COMPOSITE simply needs to be called to align those generic variables with the 
current domain’s appropriate data locations in memory. 
 
SUBROUTINE XYZ 
 
CALL POINT_TO_COMPOSITE ( MY_DOMAIN_ID ) 
 
CALL MPI_RECV ( PARENT_SHIFT, 3, MPI_INTEGER, …… 
 
END SUBROUTINE XYZ 
 
In this case the MPI_RECV will always use the correct memory location of PARENT_SHIFT 
for whichever domain the task is on at the given time. 
 
f.  General initialization 
 
     The NMM gridded component is the ESMF component lying at the highest level within the 
model.  It handles work associated with initializing the run.  This includes a very large number of 
specific details related to the parents and the nests and because they are documented in the 
initialization procedure source code those details will not be covered here. 
 
     However one particularly important aspect of the initialization step will be mentioned.  As 
stated earlier all of the NMMB domains are functionally equivalent.  Each domain is an element 
in DOMAIN_GRID_COMP which is simply an array of the ESMF gridded components 
representing each of the domains.  There is nothing special about the nature of the uppermost 
parent domain other than it must be domain #1 since that fact is often used in logic through the 
nesting code.  The use of nesting means that both parent and child domains exist, therefore the 
routine that initializes DOMAIN_GRID_COMP must be called recursively.  The reason is that 
for the sake of certain tests the option is available for parent domains to generate initial data for 
their children and so children must not call the initialize routine before their parent has done so 
or else they will try to read in data that does not exist.  First DOMAIN_GRID_COMP is 
initialized for its array element 1 (the uppermost parent).  After a barrier to make child domains 
wait then the initialization is called recursively within a loop over all the first generation 
children.  In each iteration of the recursion the next generation DOMAIN_GRID COMP is 
initialized while its children wait then a loop over its children initializes each of them. 
 
g.  Configure files 
 



     The uppermost parent domain and all nests are functionally equivalent and all must have a 
configure file associated with them.  Each of those configure files must be located in the working 
directory where the forecast will be executed.  The code reads in each configure file and loads it 
as an ESMF configure object for later access to the files’ settings via standard ESMF calls.  The 
name of each configure file is: 
 
configure_file_NN 
 
where NN is a two-digit integer between 01 and 99 (an arbitrary value of 99 was selected as the 
largest number of different domains that can coexist in a given run).  The total number of such 
files sitting in the working directory is counted and compared to the intended total number of 
domains that the user specifies in the configure files.  If those two values are not the same then 
the run aborts with a message.  The user specifies the length of the forecast in the configure files.  
When the files are loaded a check is done to be certain that the forecast length in all files is the 
same.  If it is not then the run aborts with a message. 
 
 
2.  Timestepping 
 
     The execution of the timestepping in the forecast integration is in subroutine NMM_RUN (the 
Run step of the NMM gridded component) and it differs fundamentally between 1-way and 2-
way nesting.  In 1-way nesting each task belongs to only one domain and all domains run 
concurrently from the start to the end of the forecast where the parent always leads its children 
by at least one timestep as described above.  In 2-way nesting at least some tasks lie on multiple 
domains but never on more than one domain per generation which means a loop over the 
generations must exist over partial timestep loops allowing tasks to return after the timestep is 
finished so they can participate in another generation’s timestep(s) before switching generations 
again.  The number of generations (NUM_GENS) in the outer loop is an integer greater than 1 
only for 2-way nesting.  Here is a simple schematic of the forecast timestepping. 
 
main_block: DO WHILE ( .NOT.ALL_FORECASTS_COMPLETE ) 
 
   generations_loop: DO N = 1, NUM_GENS    
 
       domain: IF ( MY_DOMAIN_ID > 0 ) THEN  !<-- Domain ID is 0 for 2-way nesting if task 
                                                                                 !     is not in generation N. 
. 
. 
           CALL NMM_INTEGRATE( ……. )         !<-- The integration timestepping routine. 
 
           IF ( ESMF_ClockIsStopTime ( CLOCK_NMM ( MY_DOMAIN_ID ), rc=RC ) ) THEN 



              GENERATION_FINISHED ( N ) = .TRUE.    !<-- Task's fcst in generation N has 
              GENERATION_FINISHED ( N ) = .TRUE.    !      finished the entire integration. 
           ENDIF 
 
       ENDIF domain 
 
       IF ( ALL ( GENERATION_FINISHED ,NUM_GENS ) ) THEN  !<-- All of this task's 
       IF ( ALL ( GENERATION_FINISHED ,NUM_GENS ) ) THEN  !<-- domains are finished? 
          ALL_FORECASTS_COMPLETE=.TRUE. 
          EXIT generations_loop 
       ENDIF 
 
   ENDDO generations_loop 
 
ENDDO main_block 
 
Now summarize what is happening here.  The WHILE block called ‘main_block’ will continue 
to iterate until the given task has completed the forecast on every domain it lies on as indicated 
by the value of the logical flag ALL_FORECASTS_COMPLETE.  That flag is initialized to 
false.  Within that WHILE block is a DO loop called generations_loop that iterates over all the 
generations.  If a task lies on a domain within the current generation of the loop then the 
subroutine NMM_INTEGRATE is called and the task will enter the model integration.  
Immediately upon returning from NMM_INTEGRATE the Clock is checked and the value of 
GENERATION_FINISHED for the current generation of the domain that is executing is set to 
true if that domain has finished its forecast.  If the given task has finished its forecast in all 
generations it is running on, i.e., if all elements of the logical array GENERATION_FINISHED 
are true, then ALL_FORECASTS_COMPLETE becomes true.  When 
ALL_FORECASTS_COMPLETE becomes true then the given task drops out of ‘main_block’ 
and finalizes its execution. 
     The core timestepping loop named ‘timeloop_drv’ occurs inside of subroutine 
NMM_INTEGRATE.  The limits of that loop are simply the first and last timesteps of the 
integration to execute on the current domain.  For 1-way nesting all domains integrate straight 
through from the start to the end of the forecast.  Two-way nesting is different due to the 
children's feedback.  All generations except the lowermost will execute only one timestep at a 
time then return since their domains cannot proceed until they receive internal updates from their 
children (see Fig. 4).  The domains in the lowermost generation have no children and can thus 
execute a full N timesteps at a time where N is the number of timesteps within a single timestep 
of their parents.  Due to the nature of the generational use of task assignments in 2-way nesting 
some tasks will enter timeloop_drv but not be allowed to integrate because: (1) parent domains 
must first recv 2-way exchange data from all of their children at the end of each parent timestep; 



(2) child domains at the end of their parents' timesteps must be informed by their parent that the 
parent did recv exchange data from all its children meaning the given child can proceed because 
its parent is free to integrate to the end of its next timestep and send back BC update data.  If a 
domain is both a parent and a child then both conditions (1) and (2) must be true for the task on 
the given domain to integrate another timestep. 
 
 
3.  Computation of nest boundary conditions 
 
     The most fundamental aspect of nesting is that a parent domain continually computes and 
sends lateral boundary data to each of its children at the end of every parent timestep as 
described above.  Now we consider how that boundary data is generated.  When a parent reaches 
the end of its current timestep it checks to be sure all nest boundary data has been received by the 
nests one timestep ago.  If so then it proceeds with computing the new surface pressure on the 
nest boundary points since this is a fundamental quantity needed for generating boundary values 
for the child.  With static nests each parent task determines in the initialization step which nest 
tasks have any portion of their boundaries on the parent task and exactly which nest points those 
are.  For moving nests the parent must recalculate which nest boundary points must be updated 
every time any of its children shift position.  In the general case note that more than one parent 
task may be updating boundary segments on a given nest boundary task subdomain. 
 
     The parent with its own topography must produce data for a nest’s boundaries that accounts 
for the nest’s topography.  For nest mass points the parent begins by doing a bilinear 
interpolation of its surface pressure and its surface geopotential to each nest boundary point 
location which allows it to compute its model layer interface geopotentials over each of those 
nest points.  Knowing the surface geopotential at each nest boundary point the parent then does a 
vertical interpolation linearly in log P between its interface pressure and geopotentials to find the 
log of the nest surface pressure and thus the nest surface pressure itself after exponentiation.  If 
the nest surface lies below the parent surface then a quadratic extrapolation from the parent’s 
surface pressure is done to obtain the nest surface pressure.  This process is done for two rows 
along the nest boundary which then permits the computation of surface pressure at nest boundary 
velocity points by doing a 4-point average of the surrounding mass point values.  Care is taken in 
the indices of these arrays given the nature of the semi-staggered B grid.   
 
     Now the parent bilinearly interpolates its layer interface pressures to the nest boundary point 
locations and vertically averages them to get the mid-layer pressures.  Likewise it takes each of 
its variables that must be provided on the nest boundary and bilinearly interpolates them to the 
nest point locations.  Given the values of the nest boundary point surface pressures the parent 
computes the mid-layer pressures in each nest layer.  The parent can then do a cubic spline 
interpolation using the boundary variables’ values in the middle of its layers over the nest point 
locations to compute the values in the middle of the nest layers over those locations.  If the mid-



layer pressure of the nest is greater than the mid-layer pressure of the parent’s lowest layer then a 
linear extrapolation is done.  However if the extrapolation is large then unphysical values could 
result so it is moderated by an additional factor between 0 and 1 based on a hyperbola.  For small 
extrapolations the factor is near 1 but as the extrapolation gets larger and larger the factor 
asymptotes to 0 thereby keeping the magnitude of the final extrapolated value from growing too 
large.  When a temperature inversion is present in the parent then the values of T in the lowest 
two layers are first modified so that the lowest layer is a mass-weighted average of the three 
lowest layers and the next-to-lowest layer is a mass-weighted average of the lowest two layers.  
This is done to prevent skewing of the final value in the nest when extrapolation must be done. 
 
     Updated variables on the nest boundary are not sent to the nest individually.  Instead for each 
side of the nest domain each parent task allocates two derived datatype objects, one for mass 
points and one for velocity points, that hold all updated variables for all points on all nest tasks 
for which the given parent task is responsible.  For each nest task to be updated an unallocated 
pointer is pointed to vertical columns in each update boundary variable in subroutine 
PARENT_UPDATE_CHILD_BNDRY.  The unallocated pointer is what is sent into the 
boundary update routine so that when it is updated via a vertical cubic spline the actual primary 
object is automatically filled in its proper locations.  After all variables are updated then the 
parent tasks do non-blocking sends of the data to each nest boundary task that is covered by the 
parent tasks.  The target nest tasks receive the strings of data which are from more than one 
parent task where the nest boundary crosses the edge between two parent task subdomains.  
Upon receiving the data the nest task separates the data received from parent tasks and combines 
it into unified segments on the boundary for each variable.  There may be overlap between data 
from two different parent tasks due to their subdomain halos and if so then the values from the 
parent task with the smaller rank is always selected in subroutine 
CHILD_RECVS_CHILD_DATA_LIMITS.  This eliminates randomness of data arrival in the 
nest and ensures that forecasts are bit reproducible. 
 
4.  Nest motion 
 
     By far the greatest complexity of nesting is related to the motion of moving nests.  The most 
fundamental aspect of a domain’s shift is its final position relative to the location of its own and 
its parent tasks’ subdomain locations prior to the shift.  Figure 7 is a schematic of the situation.   
 
 



 
Figure 7.  Three types of data motion indicated by red, purple, and green are required to update 
all of the points in the nest’s southeast task after a shift to the northeast.  The purple, gray, and 
yellow are regions the northeast task will use for intertask updates of the other three nest 
subdomains following the shift. 
 
 
     In this example the nest domain is covered by four MPI tasks and it has shifted to the 
northeast.  In order to update the values in the nest’s southeast subdomain there are three types of 
data motion that must take place.  The area in red encompasses points that lie within the same 
subdomain before and after the shift so an intra-task update is needed there.  The southeast task’s 
points in the purple region have moved beyond that task’s previous location therefore an inter-
task update will be needed from the northeast task.  Finally the points in the green region have 
moved completely outside of the nest domain’s original position therefore they must be updated 
by one or more of the parent’s tasks. 
 
     Begin by considering the intra- and inter-task updates that come from the nest’s own tasks.  
These actions cannot be done in a simple sequence because if they were then data would be lost 
that was needed for one or the other type of update.  Therefore they are done in the following 
order: (1) Data is gathered into ISend buffers for the inter-task shift and is sent to the target nest 
tasks; (2) The intra-task update is done; (3) The inter-task data is received and applied.   
 
     In preparing for the inter-task sends in step (1) all nest tasks must determine which of their 
points’ data must be sent to which other nest tasks.  Under normal circumstances the number of 
grid increments the nest shifts on its grid does not exceed a nest compute task’s subdomain 



dimensions.  If that is the case and if the nest motion has both I and J components then each task 
except those on the trailing edge will send to three other nest tasks as seen by the purple, gray, 
and yellow areas in Fig. 7.  All trailing edge tasks except the trailing corner will send to one task.  
The trailing corner task will send to none.  If the motion has only an I or only a J component then 
each non-trailing edge task will send to only one task and the trailing edge tasks will send to 
none.  However in the most general sense if the distance of the nest’s motion exceeds the 
dimensions of its compute tasks and the halo points of the receivers are included in those points 
to be updated (to avoid doing repeated halo exchanges after the shift) then there are nine tasks 
that can potentially receive data from a given task that is sending.   
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Figure 8.  For a nest task at location X following a shift in position then there are nine nest tasks that can 
potentially receive inter-task update data from it. 
 
 
     In Fig. 8 the reason the outer tasks could receive data is that the halo region of receiving tasks 
is updated too while the sending tasks only send data from points in their compute regions so the 
target area of the tasks at the nine locations is slightly larger than the source area of the sending 
task at X.  Additional details must be considered especially with respect to domain edge values at 
mass and velocity points and dynamical tendency values in the domain’s 2nd outermost row.  
Those details will not be discussed here.  A loop over all nine potential receiving tasks is 
executed to determine which of them in their post-shift positions overlap the area of the sending 
task X in its pre-shift location.  For those that do overlap, the exact number of points within the 
overlap region is found and then the total number of real and integer words for all update fields 
can be computed.  Next a loop over all update variables themselves is executed and the values at 
the overlap points for each receiving task are saved into buffers.  When all update data has been 
saved then the real and the integer data are sent to the target receivers in non-blocking sends. 
 
     Step (2) in the update process following a shift is intra-task and is thus the simplest.  This 
handles those points in the task subdomain whose post-shift locations remain within the pre-shift 



footprint of the same task which naturally means there is no need for MPI.  Again update points 
include the subdomain halos but the source data comes only from compute points.  The updates 
are done simply by considering each relevant variable’s array, looping through the affected 
points and setting the new value at each location to the current value at a different location, i.e., 
A(i,j) = A(i+i_shift, j+j_shift).  Care must be taken though.  If the shift was northward then the J 
loop can iterate positively.  However if the shift was southward then the J loop must iterate 
negatively or else source data later in the loop would already have been changed to updated 
values earlier in the loop.  If the shift has no northward or southward component then the same 
notion is applied for the I loop, i.e., it must iterate negatively for a westward shift. 
 
     Step (3) of the update process is essentially the reverse of step (1).  A loop over the nine 
potential sending tasks is executed.  Overlap regions are determined to find which tasks are 
actually sending updates, word counts for all real and integer update data are computed, and then 
that data from each of the sending tasks is received and incorporated into each of the updated 
variables. 
 
     The most complex update following a nest’s shift is for those points that move beyond the 
pre-shift footprint of the nest and which therefore must be given new values by the parent.  In 
Fig. 7 these points are those within the green region for the task subdomain in the nest’s 
southeast corner.  For technical reasons the parent will also update any points that not only have 
moved beyond the nest’s pre-move footprint but also those that have moved onto the outer two 
rows of that pre-move footprint.  This is related to the nature of the semi-staggered B grid and to 
the fact that some key dynamical tendencies are not computed on the 2nd row around the edge of 
the nest domain.  While most of these update regions are rectangular, some nest tasks after the 
shift will lie on a corner of the pre-move footprint meaning that the update region the parent will 
handle is a rectangle with a wedge missing.  These areas require complicated logic to determine 
which points on individual nest task subdomains are updated by which parent task subdomains.  
Nest task subdomains that shift to a corner will be updated by a minimum of one and a maximum 
of four parent tasks.  Rather than have either the parent or the nest tasks do all the bookkeeping 
(which points on which nest task subdomains are updated by which parent tasks) and then share 
it via MPI with the other domain all update bookkeeping is done independently by the nest and 
the parent tasks.  This approach avoids additional MPI communication and also allows each of 
the two domains’ bookkeeping results to serve as a check on the other’s since if they disagree 
then the sends and recvs of data would fail.  After the parent finishes its bookkeeping then 
depending on the variable it generates the update data using either nearest neighbor values, plain 
bilinear interpolation, bilinear interpolation accounting for the presence of the sea mask, or 
bilinear interpolation accounting for the presence of the land mask.  For 2-way interaction the 
number of nest tasks that will update a given parent task will change in time therefore ordinary 
arrays cannot be used efficiently to receive and store data from the child tasks that are sending.  
Instead each parent task interacting with a nest task creates a linked list for each moving nest 
with information from those nest tasks contained within each link.  Each time any of the parent’s 



children shift then the linked list of those parent tasks associated with that child is deallocated 
and is built again based on the new positions of the two domains’ task subdomains. 
 
     When a child nest has decided to move it will do so three parent timesteps after making the 
decision since the parent could be either one or two timesteps ahead of the child for 1-way 
interaction.  The parent continually probes for messages from its moving children indicating 
when the child will move and containing the I and J components of the shift.  The message is 
received by the parent at the end of a parent timestep while the child will have sent it from the 
beginning of an earlier parent timestep depending on the relative integration speeds of parent and 
child.  The parent computes and sends the new internal child data for those child gridpoints that 
have moved over a new region of the parent grid as well as the new boundary data valid for their 
grids' new locations. 
 
     What has just been described is the shifting of a nest on its static parent’s domain.  Recall that 
at the beginning of this note it was stated that moving nests can telescope one more generation 
and can thus contain another moving nest.  This setup is particularly important for tropical 
storms.  The entire globe or a static basin over a large region of interest serves as an uppermost 
parent.  On that static domain one or more moving nests follow their respective storms and 
should be large enough to cover much of their surrounding environment.  Within each moving 
nest lies a smaller moving nest that encompasses the storm more closely to provide even more 
resolution.  Allowing for moving nests within moving nests introduces another layer of 
considerable additional complexity.  Only two fundamental aspects of moving-within-moving 
nests will be mentioned here.  When a child nest wants to shift then it must inform its parent so 
that boundary data at the post-shift location can be prepared by the parent.  When a parent (outer) 
nest has decided that it will shift it must notify the lead task of each of its moving children.  This 
is required so that the children will be able to recompute parent-child task layout relationships 
which will change after the shift.  It also forces the children to wait to receive the task update 
specifications for boundary data from the parent in its new position before they execute their 
normal receiving of boundary data from the future.  
 
     One particular problem of moving nests within moving nests is the possibility of collision 
between an inner nest and its outer nest’s boundary.  Naturally this must be avoided.  When an 
inner nest determines it wants to shift a distance that will cause a collision then it instructs its 
parent that the parent must first shift far enough to avoid the collision.  After the parent has 
completed the evasive shift then the inner nest can shift.   
 
     The source of storm motion within the model is the storm tracker which makes dynamical 
calculations during the forecast to determine how the storm moves.  The storm tracker is called 
after an integer number of physics timesteps (= 20 sec) and in operations that number is 20 so the 
tracker is called every 400 sec.  In order to avoid the possibility that an outer and inner nest will 
make different decisions about their motion given input from the storm tracker only inner 



moving nests are directly tied to the tracker thus it is the inner nests that actually follow each 
storm.  The outer nests always know the location of their inner nests so they simply follow the 
inner nests.  The user specifies in the moving parent’s configure file the greatest number of 
parent grid increments that its center can be from the inner nest’s center.  When that value is 
exceeded the outer nest will shift to bring the centers back together as closely as possible given 
certain constraints. 
 
 
5.  Fundamental integration sequence 
 
Now that fundamental aspects of the nesting have been described the following primary steps in 
the execution of the NMMB forecast with moving nests using 2-way interaction with their 
parents are listed.  If the nesting is 1-way interactive then those details related to 2-way can be 
ignored. 
 
(1)  Consider the beginning of a nest timestep coinciding with the start of a parent timestep.  If 
there is 2-way nesting then check for the signals from parents and children to know if the 
execution can proceed into this timestep.  Due to the nature of the generational use of task 
assignments in 2-way nesting some tasks will enter the main integration timeloop but not be 
allowed to integrate because: (i) Parent domains must first receive 2-way exchange data from all 
of their children at the end of each parent timestep; (ii) Child domains at the end of their parents' 
timesteps must be informed by their parent that the parent did receive exchange data from ALL 
of its children meaning the given child can proceed because its parent is free to integrate to the 
end of its next timestep and send back BC update data.  If a domain is both a parent and a child 
then both of those conditions must be true for the domain to integrate another timestep. 
 
(2)  Immediately following (1) are these actions:  (i) If a child has decided it wants to move then 
it sends a message to its parent informing it of that fact along with the location to which it is 
moving on the parent grid.  That move must happen at a parent timestep in the future because the 
parent must provide data to some internal child points following a move and since the parent 
must always run ahead of its children (to provide the boundary data from the future) then the 
new data for those internal child points must also originate at a future timestep.  That future 
parent timestep in which the nest will shift is also sent to the parent.  (ii)  If the current timestep 
is equal to the timestep in which the nest determined it wants to shift then the child now receives 
the parent data for its internal gridpoints that have moved over a new portion of the parent grid as 
well as the boundary data at the new location.  (iii)  All children receive boundary data updates 
from their parent from one parent timestep in the future. 
 
(3)  If 2-way interaction is turned on then the parent receives the upscale data sent from its 
children. 
 



(4) The uppermost parent integrates one timestep and waits for 2-way upscale feedback.  Then
each of its children integrate one timestep and wait as well.  Grandchild nests then integrate N3
timesteps where N3 is the number of their timesteps per timestep of their 2nd generation parent
and send 2-way upscale data to the parent.  This allows the domains in the 2nd generation to
move ahead one more timestep before waiting again.  After the children in the 2nd generation
have moved N2 timesteps (the number of their timesteps per timestep of the uppermost parent)
they can send upscale data to their parent which then allows the upper parent to take another
timestep.  Recall that while static nests can telescope without limit, a moving nest in the 2nd
generation can have a single child within it but the 3rd generation nest cannot have children.  The
capability to have more than two generations of moving nests would add even more complexity
to the code and was not done.

(5) A parent sends BC data to its children at the end of each parent timestep.  For static nests the
parents compute only once the association between their tasks and their children's boundary tasks
then send those child tasks the information they need in order to be able to properly receive
forecast data.  Then the parents send the new boundary data to the child boundary tasks.  For
moving nests the parents are sent the new location of any of their children who moved.  The
parents then recompute the association between their tasks and their children's boundary tasks as
well as with child tasks in the new region of the parent into which the children moved.  Parents
send the pertinent child tasks information they need in order to receive BC data.  Finally the
parents send their moving children new boundary data plus new internal data for the area of the
parent newly covered by the most recent motion of the nests.

(6) Write out history/restart files if it is time to do so after the model’s clock has been advanced
at the end of the timestep.

After these processes complete then each task checks if it has finished the forecast in its current 
generation.  When the task has completed the forecast in all the generations it is in then it exits 
the loop that continually iterates over all generations and it finalizes its execution. 

6. Operational applications

The NMMB’s nesting has been utilized operationally in two different ways.  The first uses the
static nests in the North American Model (NAM) forecast slot.  A parent domain with 12 km grid 
spacing spans a large region over North America and extends west of Hawaii.  Four nests with 3 
km grid spacing lie on the parent.  The four nests cover the CONUS, Alaska, Puerto Rico and 
Hawaii.  In addition another static nest with 1 km grid spacing lies either on the CONUS or the 
Alaska nest.  This nest can be relocated each cycle and is referred to as the Fire Weather nest 
since its original purpose was to provide the U.S. Forest Service with very high resolution 



guidance for specific wildfire events.  However it has also been placed over other areas of 
particular interest for such events as presidential inaugurations and the Super Bowl.  All these 
nests are 1-way interactive with their parents. 

     The second application of the NMMB’s nesting is in the operational Hurricanes in a Multi-
scale Ocean-coupled Non-hydrostatic (HMON) model which is the atmospheric component of 
the coupled system that includes the Hybrid Coordinate Ocean Model (HYCOM).  As described 
earlier the NMMB can have multiple moving nests that each contain its own moving nest.  
However the coupler employed in the HMON-HYCOM system has two stringent requirements.  
The first is that only a single moving outer nest with a moving inner nest be used on the upper 
parent domain thus the NMMB’s capability to forecast multiple storms at once cannot be taken 
advantage of.  The second is that the task layouts of the parent, outer nest, and inner nest must be 
identical thereby precluding the fine-tuning of task assignments on each domain in order to 
minimize clocktime.  Given those requirements then each nest is 2-way interactive with its 
parent.  Ocean coupling is explicit for the parent and outer nest domains.  The inner nest’s ocean-
related surface variables are interpolated from the outer nest. 

7. Summary

A comprehensive nesting capability was added to the NMMB.  It allows the model domain to 
contain any number of static and/or moving nests the user wishes to use.  Static nests can 
telescope to as many inner nests as the user desires.  Moving nests can telescope to one deeper 
moving nest.  All parent and child domains can employ either 1-way or 2-way interaction.  The 
type of interaction chosen dictates the nature of the MPI task usage in order to make optimal use 
of resources and to minimize runtime.  All tasks are uniquely assigned to individual domains 
when 1-way interaction is used so that when work is balanced properly all compute tasks are 
busy nearly all the time as all domains are proceeding in their forecasts concurrently.  For 2-way 
interaction parent domains must always stop at the end of every timestep and wait to receive 
upscale data from their children.  To compensate for these waits all compute tasks are uniquely 
assigned to the individual domains in what is considered to be the most computationally 
expensive generation of domains.  Then in each remaining generation as many tasks as possible 
are reassigned across the domains of each of those generations avoiding the use of too many 
tasks on a domain which would slow down the run with too small decomposition subdomains.  A 
given task can lie on domains in any or all generations but can only lie on one domain per 
generation.  Then the generations execute sequentially while all domains within each generation 
execute concurrently.  This means as many tasks as possible are busy at any given time allowing 
the forecast to run as fast as possible. 
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